| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959 | "use strict";var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");var _assert = _interopRequireDefault(require("assert"));var leap = _interopRequireWildcard(require("./leap"));var meta = _interopRequireWildcard(require("./meta"));var util = _interopRequireWildcard(require("./util"));/** * Copyright (c) 2014-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */var hasOwn = Object.prototype.hasOwnProperty;function Emitter(contextId) {  _assert["default"].ok(this instanceof Emitter);  util.getTypes().assertIdentifier(contextId); // Used to generate unique temporary names.  this.nextTempId = 0; // In order to make sure the context object does not collide with  // anything in the local scope, we might have to rename it, so we  // refer to it symbolically instead of just assuming that it will be  // called "context".  this.contextId = contextId; // An append-only list of Statements that grows each time this.emit is  // called.  this.listing = []; // A sparse array whose keys correspond to locations in this.listing  // that have been marked as branch/jump targets.  this.marked = [true];  this.insertedLocs = new Set(); // The last location will be marked when this.getDispatchLoop is  // called.  this.finalLoc = this.loc(); // A list of all leap.TryEntry statements emitted.  this.tryEntries = []; // Each time we evaluate the body of a loop, we tell this.leapManager  // to enter a nested loop context that determines the meaning of break  // and continue statements therein.  this.leapManager = new leap.LeapManager(this);}var Ep = Emitter.prototype;exports.Emitter = Emitter; // Offsets into this.listing that could be used as targets for branches or// jumps are represented as numeric Literal nodes. This representation has// the amazingly convenient benefit of allowing the exact value of the// location to be determined at any time, even after generating code that// refers to the location.Ep.loc = function () {  var l = util.getTypes().numericLiteral(-1);  this.insertedLocs.add(l);  return l;};Ep.getInsertedLocs = function () {  return this.insertedLocs;};Ep.getContextId = function () {  return util.getTypes().clone(this.contextId);}; // Sets the exact value of the given location to the offset of the next// Statement emitted.Ep.mark = function (loc) {  util.getTypes().assertLiteral(loc);  var index = this.listing.length;  if (loc.value === -1) {    loc.value = index;  } else {    // Locations can be marked redundantly, but their values cannot change    // once set the first time.    _assert["default"].strictEqual(loc.value, index);  }  this.marked[index] = true;  return loc;};Ep.emit = function (node) {  var t = util.getTypes();  if (t.isExpression(node)) {    node = t.expressionStatement(node);  }  t.assertStatement(node);  this.listing.push(node);}; // Shorthand for emitting assignment statements. This will come in handy// for assignments to temporary variables.Ep.emitAssign = function (lhs, rhs) {  this.emit(this.assign(lhs, rhs));  return lhs;}; // Shorthand for an assignment statement.Ep.assign = function (lhs, rhs) {  var t = util.getTypes();  return t.expressionStatement(t.assignmentExpression("=", t.cloneDeep(lhs), rhs));}; // Convenience function for generating expressions like context.next,// context.sent, and context.rval.Ep.contextProperty = function (name, computed) {  var t = util.getTypes();  return t.memberExpression(this.getContextId(), computed ? t.stringLiteral(name) : t.identifier(name), !!computed);}; // Shorthand for setting context.rval and jumping to `context.stop()`.Ep.stop = function (rval) {  if (rval) {    this.setReturnValue(rval);  }  this.jump(this.finalLoc);};Ep.setReturnValue = function (valuePath) {  util.getTypes().assertExpression(valuePath.value);  this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath));};Ep.clearPendingException = function (tryLoc, assignee) {  var t = util.getTypes();  t.assertLiteral(tryLoc);  var catchCall = t.callExpression(this.contextProperty("catch", true), [t.clone(tryLoc)]);  if (assignee) {    this.emitAssign(assignee, catchCall);  } else {    this.emit(catchCall);  }}; // Emits code for an unconditional jump to the given location, even if the// exact value of the location is not yet known.Ep.jump = function (toLoc) {  this.emitAssign(this.contextProperty("next"), toLoc);  this.emit(util.getTypes().breakStatement());}; // Conditional jump.Ep.jumpIf = function (test, toLoc) {  var t = util.getTypes();  t.assertExpression(test);  t.assertLiteral(toLoc);  this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));}; // Conditional jump, with the condition negated.Ep.jumpIfNot = function (test, toLoc) {  var t = util.getTypes();  t.assertExpression(test);  t.assertLiteral(toLoc);  var negatedTest;  if (t.isUnaryExpression(test) && test.operator === "!") {    // Avoid double negation.    negatedTest = test.argument;  } else {    negatedTest = t.unaryExpression("!", test);  }  this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));}; // Returns a unique MemberExpression that can be used to store and// retrieve temporary values. Since the object of the member expression is// the context object, which is presumed to coexist peacefully with all// other local variables, and since we just increment `nextTempId`// monotonically, uniqueness is assured.Ep.makeTempVar = function () {  return this.contextProperty("t" + this.nextTempId++);};Ep.getContextFunction = function (id) {  var t = util.getTypes();  return t.functionExpression(id || null  /*Anonymous*/  , [this.getContextId()], t.blockStatement([this.getDispatchLoop()]), false, // Not a generator anymore!  false // Nor an expression.  );}; // Turns this.listing into a loop of the form////   while (1) switch (context.next) {//   case 0://   ...//   case n://     return context.stop();//   }//// Each marked location in this.listing will correspond to one generated// case statement.Ep.getDispatchLoop = function () {  var self = this;  var t = util.getTypes();  var cases = [];  var current; // If we encounter a break, continue, or return statement in a switch  // case, we can skip the rest of the statements until the next case.  var alreadyEnded = false;  self.listing.forEach(function (stmt, i) {    if (self.marked.hasOwnProperty(i)) {      cases.push(t.switchCase(t.numericLiteral(i), current = []));      alreadyEnded = false;    }    if (!alreadyEnded) {      current.push(stmt);      if (t.isCompletionStatement(stmt)) alreadyEnded = true;    }  }); // Now that we know how many statements there will be in this.listing,  // we can finally resolve this.finalLoc.value.  this.finalLoc.value = this.listing.length;  cases.push(t.switchCase(this.finalLoc, [// Intentionally fall through to the "end" case...  ]), // So that the runtime can jump to the final location without having  // to know its offset, we provide the "end" case as a synonym.  t.switchCase(t.stringLiteral("end"), [// This will check/clear both context.thrown and context.rval.  t.returnStatement(t.callExpression(this.contextProperty("stop"), []))]));  return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases));};Ep.getTryLocsList = function () {  if (this.tryEntries.length === 0) {    // To avoid adding a needless [] to the majority of runtime.wrap    // argument lists, force the caller to handle this case specially.    return null;  }  var t = util.getTypes();  var lastLocValue = 0;  return t.arrayExpression(this.tryEntries.map(function (tryEntry) {    var thisLocValue = tryEntry.firstLoc.value;    _assert["default"].ok(thisLocValue >= lastLocValue, "try entries out of order");    lastLocValue = thisLocValue;    var ce = tryEntry.catchEntry;    var fe = tryEntry.finallyEntry;    var locs = [tryEntry.firstLoc, // The null here makes a hole in the array.    ce ? ce.firstLoc : null];    if (fe) {      locs[2] = fe.firstLoc;      locs[3] = fe.afterLoc;    }    return t.arrayExpression(locs.map(function (loc) {      return loc && t.clone(loc);    }));  }));}; // All side effects must be realized in order.// If any subexpression harbors a leap, all subexpressions must be// neutered of side effects.// No destructive modification of AST nodes.Ep.explode = function (path, ignoreResult) {  var t = util.getTypes();  var node = path.node;  var self = this;  t.assertNode(node);  if (t.isDeclaration(node)) throw getDeclError(node);  if (t.isStatement(node)) return self.explodeStatement(path);  if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult);  switch (node.type) {    case "Program":      return path.get("body").map(self.explodeStatement, self);    case "VariableDeclarator":      throw getDeclError(node);    // These node types should be handled by their parent nodes    // (ObjectExpression, SwitchStatement, and TryStatement, respectively).    case "Property":    case "SwitchCase":    case "CatchClause":      throw new Error(node.type + " nodes should be handled by their parents");    default:      throw new Error("unknown Node of type " + JSON.stringify(node.type));  }};function getDeclError(node) {  return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node));}Ep.explodeStatement = function (path, labelId) {  var t = util.getTypes();  var stmt = path.node;  var self = this;  var before, after, head;  t.assertStatement(stmt);  if (labelId) {    t.assertIdentifier(labelId);  } else {    labelId = null;  } // Explode BlockStatement nodes even if they do not contain a yield,  // because we don't want or need the curly braces.  if (t.isBlockStatement(stmt)) {    path.get("body").forEach(function (path) {      self.explodeStatement(path);    });    return;  }  if (!meta.containsLeap(stmt)) {    // Technically we should be able to avoid emitting the statement    // altogether if !meta.hasSideEffects(stmt), but that leads to    // confusing generated code (for instance, `while (true) {}` just    // disappears) and is probably a more appropriate job for a dedicated    // dead code elimination pass.    self.emit(stmt);    return;  }  switch (stmt.type) {    case "ExpressionStatement":      self.explodeExpression(path.get("expression"), true);      break;    case "LabeledStatement":      after = this.loc(); // Did you know you can break from any labeled block statement or      // control structure? Well, you can! Note: when a labeled loop is      // encountered, the leap.LabeledEntry created here will immediately      // enclose a leap.LoopEntry on the leap manager's stack, and both      // entries will have the same label. Though this works just fine, it      // may seem a bit redundant. In theory, we could check here to      // determine if stmt knows how to handle its own label; for example,      // stmt happens to be a WhileStatement and so we know it's going to      // establish its own LoopEntry when we explode it (below). Then this      // LabeledEntry would be unnecessary. Alternatively, we might be      // tempted not to pass stmt.label down into self.explodeStatement,      // because we've handled the label here, but that's a mistake because      // labeled loops may contain labeled continue statements, which is not      // something we can handle in this generic case. All in all, I think a      // little redundancy greatly simplifies the logic of this case, since      // it's clear that we handle all possible LabeledStatements correctly      // here, regardless of whether they interact with the leap manager      // themselves. Also remember that labels and break/continue-to-label      // statements are rare, and all of this logic happens at transform      // time, so it has no additional runtime cost.      self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () {        self.explodeStatement(path.get("body"), stmt.label);      });      self.mark(after);      break;    case "WhileStatement":      before = this.loc();      after = this.loc();      self.mark(before);      self.jumpIfNot(self.explodeExpression(path.get("test")), after);      self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () {        self.explodeStatement(path.get("body"));      });      self.jump(before);      self.mark(after);      break;    case "DoWhileStatement":      var first = this.loc();      var test = this.loc();      after = this.loc();      self.mark(first);      self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () {        self.explode(path.get("body"));      });      self.mark(test);      self.jumpIf(self.explodeExpression(path.get("test")), first);      self.mark(after);      break;    case "ForStatement":      head = this.loc();      var update = this.loc();      after = this.loc();      if (stmt.init) {        // We pass true here to indicate that if stmt.init is an expression        // then we do not care about its result.        self.explode(path.get("init"), true);      }      self.mark(head);      if (stmt.test) {        self.jumpIfNot(self.explodeExpression(path.get("test")), after);      } else {// No test means continue unconditionally.      }      self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () {        self.explodeStatement(path.get("body"));      });      self.mark(update);      if (stmt.update) {        // We pass true here to indicate that if stmt.update is an        // expression then we do not care about its result.        self.explode(path.get("update"), true);      }      self.jump(head);      self.mark(after);      break;    case "TypeCastExpression":      return self.explodeExpression(path.get("expression"));    case "ForInStatement":      head = this.loc();      after = this.loc();      var keyIterNextFn = self.makeTempVar();      self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))]));      self.mark(head);      var keyInfoTmpVar = self.makeTempVar();      self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(t.cloneDeep(keyIterNextFn), [])), t.identifier("done"), false), after);      self.emitAssign(stmt.left, t.memberExpression(t.cloneDeep(keyInfoTmpVar), t.identifier("value"), false));      self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () {        self.explodeStatement(path.get("body"));      });      self.jump(head);      self.mark(after);      break;    case "BreakStatement":      self.emitAbruptCompletion({        type: "break",        target: self.leapManager.getBreakLoc(stmt.label)      });      break;    case "ContinueStatement":      self.emitAbruptCompletion({        type: "continue",        target: self.leapManager.getContinueLoc(stmt.label)      });      break;    case "SwitchStatement":      // Always save the discriminant into a temporary variable in case the      // test expressions overwrite values like context.sent.      var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant")));      after = this.loc();      var defaultLoc = this.loc();      var condition = defaultLoc;      var caseLocs = []; // If there are no cases, .cases might be undefined.      var cases = stmt.cases || [];      for (var i = cases.length - 1; i >= 0; --i) {        var c = cases[i];        t.assertSwitchCase(c);        if (c.test) {          condition = t.conditionalExpression(t.binaryExpression("===", t.cloneDeep(disc), c.test), caseLocs[i] = this.loc(), condition);        } else {          caseLocs[i] = defaultLoc;        }      }      var discriminant = path.get("discriminant");      util.replaceWithOrRemove(discriminant, condition);      self.jump(self.explodeExpression(discriminant));      self.leapManager.withEntry(new leap.SwitchEntry(after), function () {        path.get("cases").forEach(function (casePath) {          var i = casePath.key;          self.mark(caseLocs[i]);          casePath.get("consequent").forEach(function (path) {            self.explodeStatement(path);          });        });      });      self.mark(after);      if (defaultLoc.value === -1) {        self.mark(defaultLoc);        _assert["default"].strictEqual(after.value, defaultLoc.value);      }      break;    case "IfStatement":      var elseLoc = stmt.alternate && this.loc();      after = this.loc();      self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after);      self.explodeStatement(path.get("consequent"));      if (elseLoc) {        self.jump(after);        self.mark(elseLoc);        self.explodeStatement(path.get("alternate"));      }      self.mark(after);      break;    case "ReturnStatement":      self.emitAbruptCompletion({        type: "return",        value: self.explodeExpression(path.get("argument"))      });      break;    case "WithStatement":      throw new Error("WithStatement not supported in generator functions.");    case "TryStatement":      after = this.loc();      var handler = stmt.handler;      var catchLoc = handler && this.loc();      var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param);      var finallyLoc = stmt.finalizer && this.loc();      var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after);      var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry);      self.tryEntries.push(tryEntry);      self.updateContextPrevLoc(tryEntry.firstLoc);      self.leapManager.withEntry(tryEntry, function () {        self.explodeStatement(path.get("block"));        if (catchLoc) {          if (finallyLoc) {            // If we have both a catch block and a finally block, then            // because we emit the catch block first, we need to jump over            // it to the finally block.            self.jump(finallyLoc);          } else {            // If there is no finally block, then we need to jump over the            // catch block to the fall-through location.            self.jump(after);          }          self.updateContextPrevLoc(self.mark(catchLoc));          var bodyPath = path.get("handler.body");          var safeParam = self.makeTempVar();          self.clearPendingException(tryEntry.firstLoc, safeParam);          bodyPath.traverse(catchParamVisitor, {            getSafeParam: function getSafeParam() {              return t.cloneDeep(safeParam);            },            catchParamName: handler.param.name          });          self.leapManager.withEntry(catchEntry, function () {            self.explodeStatement(bodyPath);          });        }        if (finallyLoc) {          self.updateContextPrevLoc(self.mark(finallyLoc));          self.leapManager.withEntry(finallyEntry, function () {            self.explodeStatement(path.get("finalizer"));          });          self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc])));        }      });      self.mark(after);      break;    case "ThrowStatement":      self.emit(t.throwStatement(self.explodeExpression(path.get("argument"))));      break;    default:      throw new Error("unknown Statement of type " + JSON.stringify(stmt.type));  }};var catchParamVisitor = {  Identifier: function Identifier(path, state) {    if (path.node.name === state.catchParamName && util.isReference(path)) {      util.replaceWithOrRemove(path, state.getSafeParam());    }  },  Scope: function Scope(path, state) {    if (path.scope.hasOwnBinding(state.catchParamName)) {      // Don't descend into nested scopes that shadow the catch      // parameter with their own declarations.      path.skip();    }  }};Ep.emitAbruptCompletion = function (record) {  if (!isValidCompletion(record)) {    _assert["default"].ok(false, "invalid completion record: " + JSON.stringify(record));  }  _assert["default"].notStrictEqual(record.type, "normal", "normal completions are not abrupt");  var t = util.getTypes();  var abruptArgs = [t.stringLiteral(record.type)];  if (record.type === "break" || record.type === "continue") {    t.assertLiteral(record.target);    abruptArgs[1] = this.insertedLocs.has(record.target) ? record.target : t.cloneDeep(record.target);  } else if (record.type === "return" || record.type === "throw") {    if (record.value) {      t.assertExpression(record.value);      abruptArgs[1] = this.insertedLocs.has(record.value) ? record.value : t.cloneDeep(record.value);    }  }  this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs)));};function isValidCompletion(record) {  var type = record.type;  if (type === "normal") {    return !hasOwn.call(record, "target");  }  if (type === "break" || type === "continue") {    return !hasOwn.call(record, "value") && util.getTypes().isLiteral(record.target);  }  if (type === "return" || type === "throw") {    return hasOwn.call(record, "value") && !hasOwn.call(record, "target");  }  return false;} // Not all offsets into emitter.listing are potential jump targets. For// example, execution typically falls into the beginning of a try block// without jumping directly there. This method returns the current offset// without marking it, so that a switch case will not necessarily be// generated for this offset (I say "not necessarily" because the same// location might end up being marked in the process of emitting other// statements). There's no logical harm in marking such locations as jump// targets, but minimizing the number of switch cases keeps the generated// code shorter.Ep.getUnmarkedCurrentLoc = function () {  return util.getTypes().numericLiteral(this.listing.length);}; // The context.prev property takes the value of context.next whenever we// evaluate the switch statement discriminant, which is generally good// enough for tracking the last location we jumped to, but sometimes// context.prev needs to be more precise, such as when we fall// successfully out of a try block and into a finally block without// jumping. This method exists to update context.prev to the freshest// available location. If we were implementing a full interpreter, we// would know the location of the current instruction with complete// precision at all times, but we don't have that luxury here, as it would// be costly and verbose to set context.prev before every statement.Ep.updateContextPrevLoc = function (loc) {  var t = util.getTypes();  if (loc) {    t.assertLiteral(loc);    if (loc.value === -1) {      // If an uninitialized location literal was passed in, set its value      // to the current this.listing.length.      loc.value = this.listing.length;    } else {      // Otherwise assert that the location matches the current offset.      _assert["default"].strictEqual(loc.value, this.listing.length);    }  } else {    loc = this.getUnmarkedCurrentLoc();  } // Make sure context.prev is up to date in case we fell into this try  // statement without jumping to it. TODO Consider avoiding this  // assignment when we know control must have jumped here.  this.emitAssign(this.contextProperty("prev"), loc);};Ep.explodeExpression = function (path, ignoreResult) {  var t = util.getTypes();  var expr = path.node;  if (expr) {    t.assertExpression(expr);  } else {    return expr;  }  var self = this;  var result; // Used optionally by several cases below.  var after;  function finish(expr) {    t.assertExpression(expr);    if (ignoreResult) {      self.emit(expr);    } else {      return expr;    }  } // If the expression does not contain a leap, then we either emit the  // expression as a standalone statement or return it whole.  if (!meta.containsLeap(expr)) {    return finish(expr);  } // If any child contains a leap (such as a yield or labeled continue or  // break statement), then any sibling subexpressions will almost  // certainly have to be exploded in order to maintain the order of their  // side effects relative to the leaping child(ren).  var hasLeapingChildren = meta.containsLeap.onlyChildren(expr); // In order to save the rest of explodeExpression from a combinatorial  // trainwreck of special cases, explodeViaTempVar is responsible for  // deciding when a subexpression needs to be "exploded," which is my  // very technical term for emitting the subexpression as an assignment  // to a temporary variable and the substituting the temporary variable  // for the original subexpression. Think of exploded view diagrams, not  // Michael Bay movies. The point of exploding subexpressions is to  // control the precise order in which the generated code realizes the  // side effects of those subexpressions.  function explodeViaTempVar(tempVar, childPath, ignoreChildResult) {    _assert["default"].ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?");    var result = self.explodeExpression(childPath, ignoreChildResult);    if (ignoreChildResult) {// Side effects already emitted above.    } else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) {      // If tempVar was provided, then the result will always be assigned      // to it, even if the result does not otherwise need to be assigned      // to a temporary variable.  When no tempVar is provided, we have      // the flexibility to decide whether a temporary variable is really      // necessary.  Unfortunately, in general, a temporary variable is      // required whenever any child contains a yield expression, since it      // is difficult to prove (at all, let alone efficiently) whether      // this result would evaluate to the same value before and after the      // yield (see #206).  One narrow case where we can prove it doesn't      // matter (and thus we do not need a temporary variable) is when the      // result in question is a Literal value.      result = self.emitAssign(tempVar || self.makeTempVar(), result);    }    return result;  } // If ignoreResult is true, then we must take full responsibility for  // emitting the expression with all its side effects, and we should not  // return a result.  switch (expr.type) {    case "MemberExpression":      return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? explodeViaTempVar(null, path.get("property")) : expr.property, expr.computed));    case "CallExpression":      var calleePath = path.get("callee");      var argsPath = path.get("arguments");      var newCallee;      var newArgs;      var hasLeapingArgs = argsPath.some(function (argPath) {        return meta.containsLeap(argPath.node);      });      var injectFirstArg = null;      if (t.isMemberExpression(calleePath.node)) {        if (hasLeapingArgs) {          // If the arguments of the CallExpression contained any yield          // expressions, then we need to be sure to evaluate the callee          // before evaluating the arguments, but if the callee was a member          // expression, then we must be careful that the object of the          // member expression still gets bound to `this` for the call.          var newObject = explodeViaTempVar( // Assign the exploded callee.object expression to a temporary          // variable so that we can use it twice without reevaluating it.          self.makeTempVar(), calleePath.get("object"));          var newProperty = calleePath.node.computed ? explodeViaTempVar(null, calleePath.get("property")) : calleePath.node.property;          injectFirstArg = newObject;          newCallee = t.memberExpression(t.memberExpression(t.cloneDeep(newObject), newProperty, calleePath.node.computed), t.identifier("call"), false);        } else {          newCallee = self.explodeExpression(calleePath);        }      } else {        newCallee = explodeViaTempVar(null, calleePath);        if (t.isMemberExpression(newCallee)) {          // If the callee was not previously a MemberExpression, then the          // CallExpression was "unqualified," meaning its `this` object          // should be the global object. If the exploded expression has          // become a MemberExpression (e.g. a context property, probably a          // temporary variable), then we need to force it to be unqualified          // by using the (0, object.property)(...) trick; otherwise, it          // will receive the object of the MemberExpression as its `this`          // object.          newCallee = t.sequenceExpression([t.numericLiteral(0), t.cloneDeep(newCallee)]);        }      }      if (hasLeapingArgs) {        newArgs = argsPath.map(function (argPath) {          return explodeViaTempVar(null, argPath);        });        if (injectFirstArg) newArgs.unshift(injectFirstArg);        newArgs = newArgs.map(function (arg) {          return t.cloneDeep(arg);        });      } else {        newArgs = path.node.arguments;      }      return finish(t.callExpression(newCallee, newArgs));    case "NewExpression":      return finish(t.newExpression(explodeViaTempVar(null, path.get("callee")), path.get("arguments").map(function (argPath) {        return explodeViaTempVar(null, argPath);      })));    case "ObjectExpression":      return finish(t.objectExpression(path.get("properties").map(function (propPath) {        if (propPath.isObjectProperty()) {          return t.objectProperty(propPath.node.key, explodeViaTempVar(null, propPath.get("value")), propPath.node.computed);        } else {          return propPath.node;        }      })));    case "ArrayExpression":      return finish(t.arrayExpression(path.get("elements").map(function (elemPath) {        if (elemPath.isSpreadElement()) {          return t.spreadElement(explodeViaTempVar(null, elemPath.get("argument")));        } else {          return explodeViaTempVar(null, elemPath);        }      })));    case "SequenceExpression":      var lastIndex = expr.expressions.length - 1;      path.get("expressions").forEach(function (exprPath) {        if (exprPath.key === lastIndex) {          result = self.explodeExpression(exprPath, ignoreResult);        } else {          self.explodeExpression(exprPath, true);        }      });      return result;    case "LogicalExpression":      after = this.loc();      if (!ignoreResult) {        result = self.makeTempVar();      }      var left = explodeViaTempVar(result, path.get("left"));      if (expr.operator === "&&") {        self.jumpIfNot(left, after);      } else {        _assert["default"].strictEqual(expr.operator, "||");        self.jumpIf(left, after);      }      explodeViaTempVar(result, path.get("right"), ignoreResult);      self.mark(after);      return result;    case "ConditionalExpression":      var elseLoc = this.loc();      after = this.loc();      var test = self.explodeExpression(path.get("test"));      self.jumpIfNot(test, elseLoc);      if (!ignoreResult) {        result = self.makeTempVar();      }      explodeViaTempVar(result, path.get("consequent"), ignoreResult);      self.jump(after);      self.mark(elseLoc);      explodeViaTempVar(result, path.get("alternate"), ignoreResult);      self.mark(after);      return result;    case "UnaryExpression":      return finish(t.unaryExpression(expr.operator, // Can't (and don't need to) break up the syntax of the argument.      // Think about delete a[b].      self.explodeExpression(path.get("argument")), !!expr.prefix));    case "BinaryExpression":      return finish(t.binaryExpression(expr.operator, explodeViaTempVar(null, path.get("left")), explodeViaTempVar(null, path.get("right"))));    case "AssignmentExpression":      if (expr.operator === "=") {        // If this is a simple assignment, the left hand side does not need        // to be read before the right hand side is evaluated, so we can        // avoid the more complicated logic below.        return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right"))));      }      var lhs = self.explodeExpression(path.get("left"));      var temp = self.emitAssign(self.makeTempVar(), lhs); // For example,      //      //   x += yield y      //      // becomes      //      //   context.t0 = x      //   x = context.t0 += yield y      //      // so that the left-hand side expression is read before the yield.      // Fixes https://github.com/facebook/regenerator/issues/345.      return finish(t.assignmentExpression("=", t.cloneDeep(lhs), t.assignmentExpression(expr.operator, t.cloneDeep(temp), self.explodeExpression(path.get("right")))));    case "UpdateExpression":      return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix));    case "YieldExpression":      after = this.loc();      var arg = expr.argument && self.explodeExpression(path.get("argument"));      if (arg && expr.delegate) {        var _result = self.makeTempVar();        var _ret = t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after]));        _ret.loc = expr.loc;        self.emit(_ret);        self.mark(after);        return _result;      }      self.emitAssign(self.contextProperty("next"), after);      var ret = t.returnStatement(t.cloneDeep(arg) || null); // Preserve the `yield` location so that source mappings for the statements      // link back to the yield properly.      ret.loc = expr.loc;      self.emit(ret);      self.mark(after);      return self.contextProperty("sent");    default:      throw new Error("unknown Expression of type " + JSON.stringify(expr.type));  }};
 |