| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222 | 'use strict';// (C) 1995-2013 Jean-loup Gailly and Mark Adler// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin//// This software is provided 'as-is', without any express or implied// warranty. In no event will the authors be held liable for any damages// arising from the use of this software.//// Permission is granted to anyone to use this software for any purpose,// including commercial applications, and to alter it and redistribute it// freely, subject to the following restrictions://// 1. The origin of this software must not be misrepresented; you must not//   claim that you wrote the original software. If you use this software//   in a product, an acknowledgment in the product documentation would be//   appreciated but is not required.// 2. Altered source versions must be plainly marked as such, and must not be//   misrepresented as being the original software.// 3. This notice may not be removed or altered from any source distribution./* eslint-disable space-unary-ops */var utils = require('../utils/common');/* Public constants ==========================================================*//* ===========================================================================*///var Z_FILTERED          = 1;//var Z_HUFFMAN_ONLY      = 2;//var Z_RLE               = 3;var Z_FIXED               = 4;//var Z_DEFAULT_STRATEGY  = 0;/* Possible values of the data_type field (though see inflate()) */var Z_BINARY              = 0;var Z_TEXT                = 1;//var Z_ASCII             = 1; // = Z_TEXTvar Z_UNKNOWN             = 2;/*============================================================================*/function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }// From zutil.hvar STORED_BLOCK = 0;var STATIC_TREES = 1;var DYN_TREES    = 2;/* The three kinds of block type */var MIN_MATCH    = 3;var MAX_MATCH    = 258;/* The minimum and maximum match lengths */// From deflate.h/* =========================================================================== * Internal compression state. */var LENGTH_CODES  = 29;/* number of length codes, not counting the special END_BLOCK code */var LITERALS      = 256;/* number of literal bytes 0..255 */var L_CODES       = LITERALS + 1 + LENGTH_CODES;/* number of Literal or Length codes, including the END_BLOCK code */var D_CODES       = 30;/* number of distance codes */var BL_CODES      = 19;/* number of codes used to transfer the bit lengths */var HEAP_SIZE     = 2 * L_CODES + 1;/* maximum heap size */var MAX_BITS      = 15;/* All codes must not exceed MAX_BITS bits */var Buf_size      = 16;/* size of bit buffer in bi_buf *//* =========================================================================== * Constants */var MAX_BL_BITS = 7;/* Bit length codes must not exceed MAX_BL_BITS bits */var END_BLOCK   = 256;/* end of block literal code */var REP_3_6     = 16;/* repeat previous bit length 3-6 times (2 bits of repeat count) */var REPZ_3_10   = 17;/* repeat a zero length 3-10 times  (3 bits of repeat count) */var REPZ_11_138 = 18;/* repeat a zero length 11-138 times  (7 bits of repeat count) *//* eslint-disable comma-spacing,array-bracket-spacing */var extra_lbits =   /* extra bits for each length code */  [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];var extra_dbits =   /* extra bits for each distance code */  [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];var extra_blbits =  /* extra bits for each bit length code */  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];var bl_order =  [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];/* eslint-enable comma-spacing,array-bracket-spacing *//* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. *//* =========================================================================== * Local data. These are initialized only once. */// We pre-fill arrays with 0 to avoid uninitialized gapsvar DIST_CODE_LEN = 512; /* see definition of array dist_code below */// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1var static_ltree  = new Array((L_CODES + 2) * 2);zero(static_ltree);/* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */var static_dtree  = new Array(D_CODES * 2);zero(static_dtree);/* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */var _dist_code    = new Array(DIST_CODE_LEN);zero(_dist_code);/* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */var _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1);zero(_length_code);/* length code for each normalized match length (0 == MIN_MATCH) */var base_length   = new Array(LENGTH_CODES);zero(base_length);/* First normalized length for each code (0 = MIN_MATCH) */var base_dist     = new Array(D_CODES);zero(base_dist);/* First normalized distance for each code (0 = distance of 1) */function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {  this.static_tree  = static_tree;  /* static tree or NULL */  this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */  this.extra_base   = extra_base;   /* base index for extra_bits */  this.elems        = elems;        /* max number of elements in the tree */  this.max_length   = max_length;   /* max bit length for the codes */  // show if `static_tree` has data or dummy - needed for monomorphic objects  this.has_stree    = static_tree && static_tree.length;}var static_l_desc;var static_d_desc;var static_bl_desc;function TreeDesc(dyn_tree, stat_desc) {  this.dyn_tree = dyn_tree;     /* the dynamic tree */  this.max_code = 0;            /* largest code with non zero frequency */  this.stat_desc = stat_desc;   /* the corresponding static tree */}function d_code(dist) {  return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];}/* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */function put_short(s, w) {//    put_byte(s, (uch)((w) & 0xff));//    put_byte(s, (uch)((ush)(w) >> 8));  s.pending_buf[s.pending++] = (w) & 0xff;  s.pending_buf[s.pending++] = (w >>> 8) & 0xff;}/* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */function send_bits(s, value, length) {  if (s.bi_valid > (Buf_size - length)) {    s.bi_buf |= (value << s.bi_valid) & 0xffff;    put_short(s, s.bi_buf);    s.bi_buf = value >> (Buf_size - s.bi_valid);    s.bi_valid += length - Buf_size;  } else {    s.bi_buf |= (value << s.bi_valid) & 0xffff;    s.bi_valid += length;  }}function send_code(s, c, tree) {  send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);}/* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */function bi_reverse(code, len) {  var res = 0;  do {    res |= code & 1;    code >>>= 1;    res <<= 1;  } while (--len > 0);  return res >>> 1;}/* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */function bi_flush(s) {  if (s.bi_valid === 16) {    put_short(s, s.bi_buf);    s.bi_buf = 0;    s.bi_valid = 0;  } else if (s.bi_valid >= 8) {    s.pending_buf[s.pending++] = s.bi_buf & 0xff;    s.bi_buf >>= 8;    s.bi_valid -= 8;  }}/* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and *    above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the *     array bl_count contains the frequencies for each bit length. *     The length opt_len is updated; static_len is also updated if stree is *     not null. */function gen_bitlen(s, desc)//    deflate_state *s;//    tree_desc *desc;    /* the tree descriptor */{  var tree            = desc.dyn_tree;  var max_code        = desc.max_code;  var stree           = desc.stat_desc.static_tree;  var has_stree       = desc.stat_desc.has_stree;  var extra           = desc.stat_desc.extra_bits;  var base            = desc.stat_desc.extra_base;  var max_length      = desc.stat_desc.max_length;  var h;              /* heap index */  var n, m;           /* iterate over the tree elements */  var bits;           /* bit length */  var xbits;          /* extra bits */  var f;              /* frequency */  var overflow = 0;   /* number of elements with bit length too large */  for (bits = 0; bits <= MAX_BITS; bits++) {    s.bl_count[bits] = 0;  }  /* In a first pass, compute the optimal bit lengths (which may   * overflow in the case of the bit length tree).   */  tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */  for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {    n = s.heap[h];    bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;    if (bits > max_length) {      bits = max_length;      overflow++;    }    tree[n * 2 + 1]/*.Len*/ = bits;    /* We overwrite tree[n].Dad which is no longer needed */    if (n > max_code) { continue; } /* not a leaf node */    s.bl_count[bits]++;    xbits = 0;    if (n >= base) {      xbits = extra[n - base];    }    f = tree[n * 2]/*.Freq*/;    s.opt_len += f * (bits + xbits);    if (has_stree) {      s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);    }  }  if (overflow === 0) { return; }  // Trace((stderr,"\nbit length overflow\n"));  /* This happens for example on obj2 and pic of the Calgary corpus */  /* Find the first bit length which could increase: */  do {    bits = max_length - 1;    while (s.bl_count[bits] === 0) { bits--; }    s.bl_count[bits]--;      /* move one leaf down the tree */    s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */    s.bl_count[max_length]--;    /* The brother of the overflow item also moves one step up,     * but this does not affect bl_count[max_length]     */    overflow -= 2;  } while (overflow > 0);  /* Now recompute all bit lengths, scanning in increasing frequency.   * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all   * lengths instead of fixing only the wrong ones. This idea is taken   * from 'ar' written by Haruhiko Okumura.)   */  for (bits = max_length; bits !== 0; bits--) {    n = s.bl_count[bits];    while (n !== 0) {      m = s.heap[--h];      if (m > max_code) { continue; }      if (tree[m * 2 + 1]/*.Len*/ !== bits) {        // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));        s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;        tree[m * 2 + 1]/*.Len*/ = bits;      }      n--;    }  }}/* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non *     zero code length. */function gen_codes(tree, max_code, bl_count)//    ct_data *tree;             /* the tree to decorate *///    int max_code;              /* largest code with non zero frequency *///    ushf *bl_count;            /* number of codes at each bit length */{  var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */  var code = 0;              /* running code value */  var bits;                  /* bit index */  var n;                     /* code index */  /* The distribution counts are first used to generate the code values   * without bit reversal.   */  for (bits = 1; bits <= MAX_BITS; bits++) {    next_code[bits] = code = (code + bl_count[bits - 1]) << 1;  }  /* Check that the bit counts in bl_count are consistent. The last code   * must be all ones.   */  //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,  //        "inconsistent bit counts");  //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));  for (n = 0;  n <= max_code; n++) {    var len = tree[n * 2 + 1]/*.Len*/;    if (len === 0) { continue; }    /* Now reverse the bits */    tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);    //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",    //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));  }}/* =========================================================================== * Initialize the various 'constant' tables. */function tr_static_init() {  var n;        /* iterates over tree elements */  var bits;     /* bit counter */  var length;   /* length value */  var code;     /* code value */  var dist;     /* distance index */  var bl_count = new Array(MAX_BITS + 1);  /* number of codes at each bit length for an optimal tree */  // do check in _tr_init()  //if (static_init_done) return;  /* For some embedded targets, global variables are not initialized: *//*#ifdef NO_INIT_GLOBAL_POINTERS  static_l_desc.static_tree = static_ltree;  static_l_desc.extra_bits = extra_lbits;  static_d_desc.static_tree = static_dtree;  static_d_desc.extra_bits = extra_dbits;  static_bl_desc.extra_bits = extra_blbits;#endif*/  /* Initialize the mapping length (0..255) -> length code (0..28) */  length = 0;  for (code = 0; code < LENGTH_CODES - 1; code++) {    base_length[code] = length;    for (n = 0; n < (1 << extra_lbits[code]); n++) {      _length_code[length++] = code;    }  }  //Assert (length == 256, "tr_static_init: length != 256");  /* Note that the length 255 (match length 258) can be represented   * in two different ways: code 284 + 5 bits or code 285, so we   * overwrite length_code[255] to use the best encoding:   */  _length_code[length - 1] = code;  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */  dist = 0;  for (code = 0; code < 16; code++) {    base_dist[code] = dist;    for (n = 0; n < (1 << extra_dbits[code]); n++) {      _dist_code[dist++] = code;    }  }  //Assert (dist == 256, "tr_static_init: dist != 256");  dist >>= 7; /* from now on, all distances are divided by 128 */  for (; code < D_CODES; code++) {    base_dist[code] = dist << 7;    for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {      _dist_code[256 + dist++] = code;    }  }  //Assert (dist == 256, "tr_static_init: 256+dist != 512");  /* Construct the codes of the static literal tree */  for (bits = 0; bits <= MAX_BITS; bits++) {    bl_count[bits] = 0;  }  n = 0;  while (n <= 143) {    static_ltree[n * 2 + 1]/*.Len*/ = 8;    n++;    bl_count[8]++;  }  while (n <= 255) {    static_ltree[n * 2 + 1]/*.Len*/ = 9;    n++;    bl_count[9]++;  }  while (n <= 279) {    static_ltree[n * 2 + 1]/*.Len*/ = 7;    n++;    bl_count[7]++;  }  while (n <= 287) {    static_ltree[n * 2 + 1]/*.Len*/ = 8;    n++;    bl_count[8]++;  }  /* Codes 286 and 287 do not exist, but we must include them in the   * tree construction to get a canonical Huffman tree (longest code   * all ones)   */  gen_codes(static_ltree, L_CODES + 1, bl_count);  /* The static distance tree is trivial: */  for (n = 0; n < D_CODES; n++) {    static_dtree[n * 2 + 1]/*.Len*/ = 5;    static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);  }  // Now data ready and we can init static trees  static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);  static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);  static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);  //static_init_done = true;}/* =========================================================================== * Initialize a new block. */function init_block(s) {  var n; /* iterates over tree elements */  /* Initialize the trees. */  for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }  for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }  for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }  s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;  s.opt_len = s.static_len = 0;  s.last_lit = s.matches = 0;}/* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */function bi_windup(s){  if (s.bi_valid > 8) {    put_short(s, s.bi_buf);  } else if (s.bi_valid > 0) {    //put_byte(s, (Byte)s->bi_buf);    s.pending_buf[s.pending++] = s.bi_buf;  }  s.bi_buf = 0;  s.bi_valid = 0;}/* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */function copy_block(s, buf, len, header)//DeflateState *s;//charf    *buf;    /* the input data *///unsigned len;     /* its length *///int      header;  /* true if block header must be written */{  bi_windup(s);        /* align on byte boundary */  if (header) {    put_short(s, len);    put_short(s, ~len);  }//  while (len--) {//    put_byte(s, *buf++);//  }  utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);  s.pending += len;}/* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */function smaller(tree, n, m, depth) {  var _n2 = n * 2;  var _m2 = m * 2;  return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||         (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));}/* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */function pqdownheap(s, tree, k)//    deflate_state *s;//    ct_data *tree;  /* the tree to restore *///    int k;               /* node to move down */{  var v = s.heap[k];  var j = k << 1;  /* left son of k */  while (j <= s.heap_len) {    /* Set j to the smallest of the two sons: */    if (j < s.heap_len &&      smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {      j++;    }    /* Exit if v is smaller than both sons */    if (smaller(tree, v, s.heap[j], s.depth)) { break; }    /* Exchange v with the smallest son */    s.heap[k] = s.heap[j];    k = j;    /* And continue down the tree, setting j to the left son of k */    j <<= 1;  }  s.heap[k] = v;}// inlined manually// var SMALLEST = 1;/* =========================================================================== * Send the block data compressed using the given Huffman trees */function compress_block(s, ltree, dtree)//    deflate_state *s;//    const ct_data *ltree; /* literal tree *///    const ct_data *dtree; /* distance tree */{  var dist;           /* distance of matched string */  var lc;             /* match length or unmatched char (if dist == 0) */  var lx = 0;         /* running index in l_buf */  var code;           /* the code to send */  var extra;          /* number of extra bits to send */  if (s.last_lit !== 0) {    do {      dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);      lc = s.pending_buf[s.l_buf + lx];      lx++;      if (dist === 0) {        send_code(s, lc, ltree); /* send a literal byte */        //Tracecv(isgraph(lc), (stderr," '%c' ", lc));      } else {        /* Here, lc is the match length - MIN_MATCH */        code = _length_code[lc];        send_code(s, code + LITERALS + 1, ltree); /* send the length code */        extra = extra_lbits[code];        if (extra !== 0) {          lc -= base_length[code];          send_bits(s, lc, extra);       /* send the extra length bits */        }        dist--; /* dist is now the match distance - 1 */        code = d_code(dist);        //Assert (code < D_CODES, "bad d_code");        send_code(s, code, dtree);       /* send the distance code */        extra = extra_dbits[code];        if (extra !== 0) {          dist -= base_dist[code];          send_bits(s, dist, extra);   /* send the extra distance bits */        }      } /* literal or match pair ? */      /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */      //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,      //       "pendingBuf overflow");    } while (lx < s.last_lit);  }  send_code(s, END_BLOCK, ltree);}/* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length *     and corresponding code. The length opt_len is updated; static_len is *     also updated if stree is not null. The field max_code is set. */function build_tree(s, desc)//    deflate_state *s;//    tree_desc *desc; /* the tree descriptor */{  var tree     = desc.dyn_tree;  var stree    = desc.stat_desc.static_tree;  var has_stree = desc.stat_desc.has_stree;  var elems    = desc.stat_desc.elems;  var n, m;          /* iterate over heap elements */  var max_code = -1; /* largest code with non zero frequency */  var node;          /* new node being created */  /* Construct the initial heap, with least frequent element in   * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].   * heap[0] is not used.   */  s.heap_len = 0;  s.heap_max = HEAP_SIZE;  for (n = 0; n < elems; n++) {    if (tree[n * 2]/*.Freq*/ !== 0) {      s.heap[++s.heap_len] = max_code = n;      s.depth[n] = 0;    } else {      tree[n * 2 + 1]/*.Len*/ = 0;    }  }  /* The pkzip format requires that at least one distance code exists,   * and that at least one bit should be sent even if there is only one   * possible code. So to avoid special checks later on we force at least   * two codes of non zero frequency.   */  while (s.heap_len < 2) {    node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);    tree[node * 2]/*.Freq*/ = 1;    s.depth[node] = 0;    s.opt_len--;    if (has_stree) {      s.static_len -= stree[node * 2 + 1]/*.Len*/;    }    /* node is 0 or 1 so it does not have extra bits */  }  desc.max_code = max_code;  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,   * establish sub-heaps of increasing lengths:   */  for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }  /* Construct the Huffman tree by repeatedly combining the least two   * frequent nodes.   */  node = elems;              /* next internal node of the tree */  do {    //pqremove(s, tree, n);  /* n = node of least frequency */    /*** pqremove ***/    n = s.heap[1/*SMALLEST*/];    s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];    pqdownheap(s, tree, 1/*SMALLEST*/);    /***/    m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */    s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */    s.heap[--s.heap_max] = m;    /* Create a new node father of n and m */    tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;    s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;    tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;    /* and insert the new node in the heap */    s.heap[1/*SMALLEST*/] = node++;    pqdownheap(s, tree, 1/*SMALLEST*/);  } while (s.heap_len >= 2);  s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];  /* At this point, the fields freq and dad are set. We can now   * generate the bit lengths.   */  gen_bitlen(s, desc);  /* The field len is now set, we can generate the bit codes */  gen_codes(tree, max_code, s.bl_count);}/* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */function scan_tree(s, tree, max_code)//    deflate_state *s;//    ct_data *tree;   /* the tree to be scanned *///    int max_code;    /* and its largest code of non zero frequency */{  var n;                     /* iterates over all tree elements */  var prevlen = -1;          /* last emitted length */  var curlen;                /* length of current code */  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */  var count = 0;             /* repeat count of the current code */  var max_count = 7;         /* max repeat count */  var min_count = 4;         /* min repeat count */  if (nextlen === 0) {    max_count = 138;    min_count = 3;  }  tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */  for (n = 0; n <= max_code; n++) {    curlen = nextlen;    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;    if (++count < max_count && curlen === nextlen) {      continue;    } else if (count < min_count) {      s.bl_tree[curlen * 2]/*.Freq*/ += count;    } else if (curlen !== 0) {      if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }      s.bl_tree[REP_3_6 * 2]/*.Freq*/++;    } else if (count <= 10) {      s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;    } else {      s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;    }    count = 0;    prevlen = curlen;    if (nextlen === 0) {      max_count = 138;      min_count = 3;    } else if (curlen === nextlen) {      max_count = 6;      min_count = 3;    } else {      max_count = 7;      min_count = 4;    }  }}/* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */function send_tree(s, tree, max_code)//    deflate_state *s;//    ct_data *tree; /* the tree to be scanned *///    int max_code;       /* and its largest code of non zero frequency */{  var n;                     /* iterates over all tree elements */  var prevlen = -1;          /* last emitted length */  var curlen;                /* length of current code */  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */  var count = 0;             /* repeat count of the current code */  var max_count = 7;         /* max repeat count */  var min_count = 4;         /* min repeat count */  /* tree[max_code+1].Len = -1; */  /* guard already set */  if (nextlen === 0) {    max_count = 138;    min_count = 3;  }  for (n = 0; n <= max_code; n++) {    curlen = nextlen;    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;    if (++count < max_count && curlen === nextlen) {      continue;    } else if (count < min_count) {      do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);    } else if (curlen !== 0) {      if (curlen !== prevlen) {        send_code(s, curlen, s.bl_tree);        count--;      }      //Assert(count >= 3 && count <= 6, " 3_6?");      send_code(s, REP_3_6, s.bl_tree);      send_bits(s, count - 3, 2);    } else if (count <= 10) {      send_code(s, REPZ_3_10, s.bl_tree);      send_bits(s, count - 3, 3);    } else {      send_code(s, REPZ_11_138, s.bl_tree);      send_bits(s, count - 11, 7);    }    count = 0;    prevlen = curlen;    if (nextlen === 0) {      max_count = 138;      min_count = 3;    } else if (curlen === nextlen) {      max_count = 6;      min_count = 3;    } else {      max_count = 7;      min_count = 4;    }  }}/* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */function build_bl_tree(s) {  var max_blindex;  /* index of last bit length code of non zero freq */  /* Determine the bit length frequencies for literal and distance trees */  scan_tree(s, s.dyn_ltree, s.l_desc.max_code);  scan_tree(s, s.dyn_dtree, s.d_desc.max_code);  /* Build the bit length tree: */  build_tree(s, s.bl_desc);  /* opt_len now includes the length of the tree representations, except   * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.   */  /* Determine the number of bit length codes to send. The pkzip format   * requires that at least 4 bit length codes be sent. (appnote.txt says   * 3 but the actual value used is 4.)   */  for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {    if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {      break;    }  }  /* Update opt_len to include the bit length tree and counts */  s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;  //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",  //        s->opt_len, s->static_len));  return max_blindex;}/* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */function send_all_trees(s, lcodes, dcodes, blcodes)//    deflate_state *s;//    int lcodes, dcodes, blcodes; /* number of codes for each tree */{  var rank;                    /* index in bl_order */  //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");  //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,  //        "too many codes");  //Tracev((stderr, "\nbl counts: "));  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */  send_bits(s, dcodes - 1,   5);  send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */  for (rank = 0; rank < blcodes; rank++) {    //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));    send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);  }  //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));  send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */  //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));  send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */  //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));}/* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: *    a) There are no non-portable control characters belonging to the *       "black list" (0..6, 14..25, 28..31). *    b) There is at least one printable character belonging to the *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a *   "gray list" that is ignored in this detection algorithm: *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */function detect_data_type(s) {  /* black_mask is the bit mask of black-listed bytes   * set bits 0..6, 14..25, and 28..31   * 0xf3ffc07f = binary 11110011111111111100000001111111   */  var black_mask = 0xf3ffc07f;  var n;  /* Check for non-textual ("black-listed") bytes. */  for (n = 0; n <= 31; n++, black_mask >>>= 1) {    if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {      return Z_BINARY;    }  }  /* Check for textual ("white-listed") bytes. */  if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||      s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {    return Z_TEXT;  }  for (n = 32; n < LITERALS; n++) {    if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {      return Z_TEXT;    }  }  /* There are no "black-listed" or "white-listed" bytes:   * this stream either is empty or has tolerated ("gray-listed") bytes only.   */  return Z_BINARY;}var static_init_done = false;/* =========================================================================== * Initialize the tree data structures for a new zlib stream. */function _tr_init(s){  if (!static_init_done) {    tr_static_init();    static_init_done = true;  }  s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);  s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);  s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);  s.bi_buf = 0;  s.bi_valid = 0;  /* Initialize the first block of the first file: */  init_block(s);}/* =========================================================================== * Send a stored block */function _tr_stored_block(s, buf, stored_len, last)//DeflateState *s;//charf *buf;       /* input block *///ulg stored_len;   /* length of input block *///int last;         /* one if this is the last block for a file */{  send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */  copy_block(s, buf, stored_len, true); /* with header */}/* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */function _tr_align(s) {  send_bits(s, STATIC_TREES << 1, 3);  send_code(s, END_BLOCK, static_ltree);  bi_flush(s);}/* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */function _tr_flush_block(s, buf, stored_len, last)//DeflateState *s;//charf *buf;       /* input block, or NULL if too old *///ulg stored_len;   /* length of input block *///int last;         /* one if this is the last block for a file */{  var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */  var max_blindex = 0;        /* index of last bit length code of non zero freq */  /* Build the Huffman trees unless a stored block is forced */  if (s.level > 0) {    /* Check if the file is binary or text */    if (s.strm.data_type === Z_UNKNOWN) {      s.strm.data_type = detect_data_type(s);    }    /* Construct the literal and distance trees */    build_tree(s, s.l_desc);    // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,    //        s->static_len));    build_tree(s, s.d_desc);    // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,    //        s->static_len));    /* At this point, opt_len and static_len are the total bit lengths of     * the compressed block data, excluding the tree representations.     */    /* Build the bit length tree for the above two trees, and get the index     * in bl_order of the last bit length code to send.     */    max_blindex = build_bl_tree(s);    /* Determine the best encoding. Compute the block lengths in bytes. */    opt_lenb = (s.opt_len + 3 + 7) >>> 3;    static_lenb = (s.static_len + 3 + 7) >>> 3;    // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",    //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,    //        s->last_lit));    if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }  } else {    // Assert(buf != (char*)0, "lost buf");    opt_lenb = static_lenb = stored_len + 5; /* force a stored block */  }  if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {    /* 4: two words for the lengths */    /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.     * Otherwise we can't have processed more than WSIZE input bytes since     * the last block flush, because compression would have been     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to     * transform a block into a stored block.     */    _tr_stored_block(s, buf, stored_len, last);  } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {    send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);    compress_block(s, static_ltree, static_dtree);  } else {    send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);    send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);    compress_block(s, s.dyn_ltree, s.dyn_dtree);  }  // Assert (s->compressed_len == s->bits_sent, "bad compressed size");  /* The above check is made mod 2^32, for files larger than 512 MB   * and uLong implemented on 32 bits.   */  init_block(s);  if (last) {    bi_windup(s);  }  // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,  //       s->compressed_len-7*last));}/* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */function _tr_tally(s, dist, lc)//    deflate_state *s;//    unsigned dist;  /* distance of matched string *///    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */{  //var out_length, in_length, dcode;  s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff;  s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;  s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;  s.last_lit++;  if (dist === 0) {    /* lc is the unmatched char */    s.dyn_ltree[lc * 2]/*.Freq*/++;  } else {    s.matches++;    /* Here, lc is the match length - MIN_MATCH */    dist--;             /* dist = match distance - 1 */    //Assert((ush)dist < (ush)MAX_DIST(s) &&    //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&    //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");    s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;    s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;  }// (!) This block is disabled in zlib defaults,// don't enable it for binary compatibility//#ifdef TRUNCATE_BLOCK//  /* Try to guess if it is profitable to stop the current block here *///  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {//    /* Compute an upper bound for the compressed length *///    out_length = s.last_lit*8;//    in_length = s.strstart - s.block_start;////    for (dcode = 0; dcode < D_CODES; dcode++) {//      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);//    }//    out_length >>>= 3;//    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",//    //       s->last_lit, in_length, out_length,//    //       100L - out_length*100L/in_length));//    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {//      return true;//    }//  }//#endif  return (s.last_lit === s.lit_bufsize - 1);  /* We avoid equality with lit_bufsize because of wraparound at 64K   * on 16 bit machines and because stored blocks are restricted to   * 64K-1 bytes.   */}exports._tr_init  = _tr_init;exports._tr_stored_block = _tr_stored_block;exports._tr_flush_block  = _tr_flush_block;exports._tr_tally = _tr_tally;exports._tr_align = _tr_align;
 |