|  | @@ -0,0 +1,195 @@
 | 
	
		
			
				|  |  | +## ConcurrentHashMap1.8与1.7的区别
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +1. 去除segment分段锁
 | 
	
		
			
				|  |  | +2. synchronized+cas 保证node节点线程安全问题
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +hashmap1.8与ConcurrentHashMap1.8基础数据结构相同 数组+链表+红黑树
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +区别:
 | 
	
		
			
				|  |  | +hashtable:对我们整个table数组上锁
 | 
	
		
			
				|  |  | +ConcurrentHashMap:对node节点上锁
 | 
	
		
			
				|  |  | +多个线程同时put  key的时候,如果多个key都落入到同一个index node结点的时候,会导致锁的竞争,反之,则不会。
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +注意:
 | 
	
		
			
				|  |  | +计算index只需要一次
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +## put方法详解 
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +```
 | 
	
		
			
				|  |  | +final V putVal(K key, V value, boolean onlyIfAbsent) {
 | 
	
		
			
				|  |  | +	// 不支持key为空
 | 
	
		
			
				|  |  | +    if (key == null || value == null) throw new NullPointerException();
 | 
	
		
			
				|  |  | +    int hash = spread(key.hashCode());
 | 
	
		
			
				|  |  | +    // 链表转换为红黑树的阈值
 | 
	
		
			
				|  |  | +    int binCount = 0;
 | 
	
		
			
				|  |  | +    // 死循环,自旋。table本身带有volatile关键字,即使读取最新主内存数据,保证线程可见性
 | 
	
		
			
				|  |  | +    for (ConcurrentHashMap.Node<K,V>[] tab = table;;) {
 | 
	
		
			
				|  |  | +        ConcurrentHashMap.Node<K,V> f; int n, i, fh;
 | 
	
		
			
				|  |  | +        if (tab == null || (n = tab.length) == 0)
 | 
	
		
			
				|  |  | +        	// 初始化table
 | 
	
		
			
				|  |  | +            tab = initTable();
 | 
	
		
			
				|  |  | +        // 第二次循环,开始分治
 | 
	
		
			
				|  |  | +        // 当前链表是否为null,没有发生index冲突
 | 
	
		
			
				|  |  | +        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
 | 
	
		
			
				|  |  | +        	// 这里会使用cas锁
 | 
	
		
			
				|  |  | +            if (casTabAt(tab, i, null,
 | 
	
		
			
				|  |  | +                    new ConcurrentHashMap.Node<K,V>(hash, key, value, null)))
 | 
	
		
			
				|  |  | +                break;                   // no lock when adding to empty bin
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        // 并发扩容会辅助扩容
 | 
	
		
			
				|  |  | +        else if ((fh = f.hash) == MOVED)
 | 
	
		
			
				|  |  | +            tab = helpTransfer(tab, f);
 | 
	
		
			
				|  |  | +        else {
 | 
	
		
			
				|  |  | +            V oldVal = null;
 | 
	
		
			
				|  |  | +            // 发生冲突时,会使用synchronized锁
 | 
	
		
			
				|  |  | +            synchronized (f) {
 | 
	
		
			
				|  |  | +            	// 再次查询一次,如果该节点被删除就会导致不同步
 | 
	
		
			
				|  |  | +                if (tabAt(tab, i) == f) {
 | 
	
		
			
				|  |  | +                    if (fh >= 0) {
 | 
	
		
			
				|  |  | +                        binCount = 1;
 | 
	
		
			
				|  |  | +                        for (ConcurrentHashMap.Node<K,V> e = f;; ++binCount) {
 | 
	
		
			
				|  |  | +                            K ek;
 | 
	
		
			
				|  |  | +                            // 如果key值相同,直接修改
 | 
	
		
			
				|  |  | +                            if (e.hash == hash &&
 | 
	
		
			
				|  |  | +                                    ((ek = e.key) == key ||
 | 
	
		
			
				|  |  | +                                            (ek != null && key.equals(ek)))) {
 | 
	
		
			
				|  |  | +                                oldVal = e.val;
 | 
	
		
			
				|  |  | +                                if (!onlyIfAbsent)
 | 
	
		
			
				|  |  | +                                    e.val = value;
 | 
	
		
			
				|  |  | +                                break;
 | 
	
		
			
				|  |  | +                            }
 | 
	
		
			
				|  |  | +                            ConcurrentHashMap.Node<K,V> pred = e;
 | 
	
		
			
				|  |  | +                            if ((e = e.next) == null) {
 | 
	
		
			
				|  |  | +                                pred.next = new ConcurrentHashMap.Node<K,V>(hash, key,
 | 
	
		
			
				|  |  | +                                        value, null);
 | 
	
		
			
				|  |  | +                                break;
 | 
	
		
			
				|  |  | +                            }
 | 
	
		
			
				|  |  | +                        }
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                    else if (f instanceof ConcurrentHashMap.TreeBin) {
 | 
	
		
			
				|  |  | +                        ConcurrentHashMap.Node<K,V> p;
 | 
	
		
			
				|  |  | +                        binCount = 2;
 | 
	
		
			
				|  |  | +                        if ((p = ((ConcurrentHashMap.TreeBin<K,V>)f).putTreeVal(hash, key,
 | 
	
		
			
				|  |  | +                                value)) != null) {
 | 
	
		
			
				|  |  | +                            oldVal = p.val;
 | 
	
		
			
				|  |  | +                            if (!onlyIfAbsent)
 | 
	
		
			
				|  |  | +                                p.val = value;
 | 
	
		
			
				|  |  | +                        }
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            if (binCount != 0) {
 | 
	
		
			
				|  |  | +                if (binCount >= TREEIFY_THRESHOLD)
 | 
	
		
			
				|  |  | +                	// 转换为红黑树
 | 
	
		
			
				|  |  | +                    treeifyBin(tab, i);
 | 
	
		
			
				|  |  | +                if (oldVal != null)
 | 
	
		
			
				|  |  | +                    return oldVal;
 | 
	
		
			
				|  |  | +                break;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    addCount(1L, binCount);
 | 
	
		
			
				|  |  | +    return null;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +```
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +cas使用时候:没有发生冲突的时候
 | 
	
		
			
				|  |  | +synchronized使用:index发生冲突的时候
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +## 初始化table原理
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +```
 | 
	
		
			
				|  |  | +    private final Node<K,V>[] initTable() {
 | 
	
		
			
				|  |  | +        Node<K,V>[] tab; int sc;
 | 
	
		
			
				|  |  | +        // 自旋
 | 
	
		
			
				|  |  | +        while ((tab = table) == null || tab.length == 0) {
 | 
	
		
			
				|  |  | +        	// 如果发现其他线程正在扩容,当前线程释放CPU执行权
 | 
	
		
			
				|  |  | +            if ((sc = sizeCtl) < 0)
 | 
	
		
			
				|  |  | +                Thread.yield(); // lost initialization race; just spin
 | 
	
		
			
				|  |  | +            // cas操作,修改当前的sizeCtl为-1
 | 
	
		
			
				|  |  | +            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
 | 
	
		
			
				|  |  | +                try {
 | 
	
		
			
				|  |  | +                    if ((tab = table) == null || tab.length == 0) {
 | 
	
		
			
				|  |  | +                    	// 默认大小为16
 | 
	
		
			
				|  |  | +                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
 | 
	
		
			
				|  |  | +                        @SuppressWarnings("unchecked")
 | 
	
		
			
				|  |  | +                        // 对table长度做默认初始化
 | 
	
		
			
				|  |  | +                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
 | 
	
		
			
				|  |  | +                        table = tab = nt;
 | 
	
		
			
				|  |  | +                        // 16-4=12
 | 
	
		
			
				|  |  | +                        sc = n - (n >>> 2);
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                } finally {
 | 
	
		
			
				|  |  | +                    sizeCtl = sc;
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +                break;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        return tab;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +```
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +SIZECTL:默认值为0,用来控制table的初始化和扩容操作,具体应用在后续会体现出来
 | 
	
		
			
				|  |  | +-1:代表table正在初始化
 | 
	
		
			
				|  |  | +N:表示有N-1个线程正在进行扩容操作
 | 
	
		
			
				|  |  | +其余的情况:
 | 
	
		
			
				|  |  | +1. 如果table未初始化,表示table需要初始化的大小。0
 | 
	
		
			
				|  |  | +2. 如果table初始化完成。表示table的容量,默认是table大小的0.75倍
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +## addCount分析
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +```
 | 
	
		
			
				|  |  | +private final void addCount(long x, int check) {
 | 
	
		
			
				|  |  | +    CounterCell[] as; long b, s;
 | 
	
		
			
				|  |  | +    // basecount就是size的大小
 | 
	
		
			
				|  |  | +    if ((as = counterCells) != null ||
 | 
	
		
			
				|  |  | +        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
 | 
	
		
			
				|  |  | +        CounterCell a; long v; int m;
 | 
	
		
			
				|  |  | +        boolean uncontended = true;
 | 
	
		
			
				|  |  | +        // 修改线程自己的value
 | 
	
		
			
				|  |  | +        // 线程的随机数&m
 | 
	
		
			
				|  |  | +        if (as == null || (m = as.length - 1) < 0 ||
 | 
	
		
			
				|  |  | +            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
 | 
	
		
			
				|  |  | +            !(uncontended =
 | 
	
		
			
				|  |  | +                U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
 | 
	
		
			
				|  |  | +            fullAddCount(x, uncontended);
 | 
	
		
			
				|  |  | +            return;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (check <= 1)
 | 
	
		
			
				|  |  | +            return;
 | 
	
		
			
				|  |  | +        s = sumCount();
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    // 这行支持并发扩容
 | 
	
		
			
				|  |  | +    if (check >= 0) {
 | 
	
		
			
				|  |  | +        Node<K,V>[] tab, nt; int n, sc;
 | 
	
		
			
				|  |  | +        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
 | 
	
		
			
				|  |  | +                (n = tab.length) < MAXIMUM_CAPACITY) {
 | 
	
		
			
				|  |  | +            int rs = resizeStamp(n);
 | 
	
		
			
				|  |  | +            if (sc < 0) {
 | 
	
		
			
				|  |  | +                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
 | 
	
		
			
				|  |  | +                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
 | 
	
		
			
				|  |  | +                    transferIndex <= 0)
 | 
	
		
			
				|  |  | +                    break;
 | 
	
		
			
				|  |  | +                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
 | 
	
		
			
				|  |  | +                    transfer(tab, nt);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            else if (U.compareAndSwapInt(this, SIZECTL, sc,
 | 
	
		
			
				|  |  | +                                            (rs << RESIZE_STAMP_SHIFT) + 2))
 | 
	
		
			
				|  |  | +                transfer(tab, null);
 | 
	
		
			
				|  |  | +            s = sumCount();
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +```
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +如果多个线程对size cas ++的情况下,会导致CPU飙升
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +## ConcurrentHashMap为什么去除segment锁?
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +因为占用太多内存,而且效率较低。
 | 
	
		
			
				|  |  | +ConcurrentHashMap1.7需要计算两次index,效率低
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +## ConcurrentHashMap1.8为什么使用synchronized锁?
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +synchronized在jdk1.6之后会有锁的升级,lock不自带自旋。
 | 
	
		
			
				|  |  | +不需要自己写!
 |