surveillance_radar.py 2.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. import numpy as np
  2. from scipy.signal import find_peaks
  3. # ==================== 侦查雷达类 ====================
  4. class SurveillanceRadar:
  5. #初始化函数,传入usrp,输入的通道,输出的通道
  6. def __init__(self, usrp, rx, tx):
  7. self.usrp = usrp
  8. self.rx = rx
  9. self.tx = tx
  10. # 封装一个发送信号的函数
  11. def send_signal(self, tx_signal, duration, center_freq, sample_rate, gain):
  12. # 发送信号
  13. self.usrp.send_waveform(tx_signal, duration, center_freq, sample_rate, self.tx, gain)
  14. print('侦查雷达已发送信号')
  15. # 封装一个接收信号的函数
  16. def recv_signal(self, num_samples, sample_rate, center_freq):
  17. rx_signal = self.usrp.recv_num_samps(num_samples, center_freq, sample_rate, self.rx);
  18. print('侦查雷达已接收信号')
  19. return rx_signal
  20. # 分析信号,获取目标距离
  21. def analyze_signal(self, rx_signal: np.ndarray, sample_rate: float,
  22. cfar_threshold: float = 20.0) -> list:
  23. """
  24. 分析接收信号并返回目标距离列表
  25. :param rx_signal: 接收信号(复数形式)
  26. :param sample_rate: 采样率(Hz)
  27. :param cfar_threshold: CFAR检测阈值(dB)
  28. :return: 目标距离列表(米)
  29. """
  30. # 1. 去斜处理(Dechirping)
  31. mixed = rx_signal * np.conj(self.tx_signal[:len(rx_signal)])
  32. # 2. 加窗处理(Hamming窗)
  33. window = np.hamming(len(mixed))
  34. windowed = mixed * window
  35. # 3. 距离FFT
  36. range_fft = np.fft.fft(windowed)
  37. spectrum_db = 20 * np.log10(np.abs(range_fft) + 1e-10) # 转换为dB
  38. # 4. 计算距离轴
  39. freq_bins = np.fft.fftfreq(len(spectrum_db), 1/sample_rate)
  40. ranges = (self.c * self.T * freq_bins) / (2 * self.B)
  41. # 5. CFAR目标检测(简化版)
  42. noise_floor = np.median(spectrum_db)
  43. peaks, _ = find_peaks(spectrum_db, height=noise_floor + cfar_threshold)
  44. # 6. 提取目标距离(取前向部分)
  45. valid_peaks = peaks[peaks <= len(ranges)//2]
  46. print(f"检测到目标距离:{[abs(ranges[p]) for p in valid_peaks]} 米")
  47. return [abs(ranges[p]) for p in valid_peaks]