123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import json
- import uhd
- import numpy as np
- from dto.response_dto import ResponseDTO
- from model.surveillance_radar import SurveillanceRadar
- from model.jammer_radar import JammerRadar
- # 初始化侦查雷达
- # surveillance_radar = SurveillanceRadar(usrp,rx=CHANNEL_1,tx=CHANNEL_1)
- # Jammer_radar = JammerRadar(usrp,rx=CHANNEL_2,tx=CHANNEL_2)
- # 定义一组通道常量
- CHANNEL_1 = 0
- CHANNEL_2 = 1
- CHANNEL_3 = 2
- CHANNEL_4 = 3
- # 定义干扰策略集合,确保集合中的元素为合法的字符串常量
- JAMMING_POLICY = {
- "噪声调频", "噪声调幅", "噪声直放", "速度多假目标", "距离多假目标"
- }
- ANTI_JAMMING_POLICY = {
- "频率捷变", "波形捷变", "自适应极化滤波"
- }
- # 定义一个USRP对象
- usrp = None
- # 初始化USRP设备对象
- def initialize_usrp():
- # try:
- # usrp = uhd.usrp.MultiUSRP()
- # usrp.close()
- # print('------SDR Devices initialize success!------')
- return ResponseDTO.SUCCESS({"status": 1}).to_json()
- # except Exception as e:
- # print('SDR设备异常', e)
- # return ResponseDTO.ERROR_MS_DATA('SDR设备异常',{"status": 0,
- # "Error": str(e)}).to_json()
- # 获取SDR状态
- def getSDRStatus():
- # try:
- # samples = usrp.recv_num_samps(10000, 100e6, 1e6, [0], 50) # 单位: 需要接收的采样点总数(无单位), Hz, Hz, channel IDs 的列表, dB
- return ResponseDTO.SUCCESS({"status": 1}).to_json()
- # except Exception as e:
- # print('SDR设备异常', e)
- # return ResponseDTO.ERROR_MS_DATA('SDR设备异常', {"status": 0,
- # "Error": str(e)}).to_json()
- # 关闭USRP设备对象
- def close_usrp():
- try:
- usrp.close()
- print('------SDR Devices close success!------')
- except RuntimeError as e:
- print('SDR设备异常', e)
- def data(payload):
- jamming_policy = payload['jamming_policy']
- anti_jamming_policy = payload['anti_jamming_policy']
- # 判断策略是否合法
- if jamming_policy not in JAMMING_POLICY or anti_jamming_policy not in ANTI_JAMMING_POLICY:
- return ResponseDTO.ERROR_MS_DATA('策略不合法', {"status": 0,
- "Error": "策略不合法"}).to_json()
- #打印对应策略
- print(' jamming_policy:', jamming_policy)
- print(' anti_jamming_policy:', anti_jamming_policy)
- #生成两个长度为一百的浮点数组,代表侦察信号和返回的信号,数组元素随机
- surveillance_signal = np.random.randn(100);
- surveillance_signal_back = np.random.randn(100);
- #返回结果
- return ResponseDTO.SUCCESS({"jamming_signal": surveillance_signal.tolist(),
- "anti_jamming_signal": surveillance_signal_back.tolist()}).to_json()
- def send():
- # # 设置中心频率、采样率和增益
- # center_freq = 100e6 # 2.4 GHz
- # sample_rate = 1e6 # 1 MS/s
- # duration = 10 # 以秒为单位
- # gain = 20 # [dB] 建议一开始设置小一点,按照实际情况调整
- # # 生成发送信号
- # num_samples = 1
- # tx_signal = np.random.randn(num_samples) + 0.1j * np.random.randn(num_samples) # 修复部分
- #
- # # 发送信号
- # usrp.send_waveform(tx_signal, duration, center_freq, sample_rate, [0], gain)
- #
- # # 接收信号
- # rx_signal = usrp.recv_num_samps(num_samples, center_freq,sample_rate)
- # print('信号已发送:')
- # print(rx_signal)
- # print('信号已接收')
- # return {
- # "rx_signal": rx_signal.tolist()
- # }
- return {
- "rx_signal": [1,2,3,4,5,6,7,8,9,10]
- }
- def demo():
- # 设置中心频率、采样率和增益
- center_freq = 100e6 # 2.4 GHz
- sample_rate = 1e6 # 1 MS/s
- duration = 10 # 以秒为单位
- gain = 20 # [dB] 建议一开始设置小一点,按照实际情况调整
- # 生成发送信号
- num_samples = 100
- tx_signal = np.random.randn(num_samples) + 0.1j * np.random.randn(num_samples) # 修复部分
- # 发送信号
- usrp.send_waveform(tx_signal, duration, center_freq, sample_rate, [0], gain)
- # 接收信号
- rx_signal = usrp.recv_num_samps(num_samples, center_freq,sample_rate)
- print('信号已发送:')
- # 将复数数组转换为字符串数组
- rx_signal_str = [str(s) for s in rx_signal]
- print(rx_signal_str)
- print('信号已接收')
- return {
- "rx_signal": rx_signal_str
- }
- # 获取SDR状态,如果状态正常,则返回True,否则返回False
- #main方法
- if __name__ == '__main__':
- demo()
|