|
@@ -0,0 +1,195 @@
|
|
|
+## ConcurrentHashMap1.8与1.7的区别
|
|
|
+
|
|
|
+1. 去除segment分段锁
|
|
|
+2. synchronized+cas 保证node节点线程安全问题
|
|
|
+
|
|
|
+hashmap1.8与ConcurrentHashMap1.8基础数据结构相同 数组+链表+红黑树
|
|
|
+
|
|
|
+区别:
|
|
|
+hashtable:对我们整个table数组上锁
|
|
|
+ConcurrentHashMap:对node节点上锁
|
|
|
+多个线程同时put key的时候,如果多个key都落入到同一个index node结点的时候,会导致锁的竞争,反之,则不会。
|
|
|
+
|
|
|
+注意:
|
|
|
+计算index只需要一次
|
|
|
+
|
|
|
+## put方法详解
|
|
|
+
|
|
|
+```
|
|
|
+final V putVal(K key, V value, boolean onlyIfAbsent) {
|
|
|
+ // 不支持key为空
|
|
|
+ if (key == null || value == null) throw new NullPointerException();
|
|
|
+ int hash = spread(key.hashCode());
|
|
|
+ // 链表转换为红黑树的阈值
|
|
|
+ int binCount = 0;
|
|
|
+ // 死循环,自旋。table本身带有volatile关键字,即使读取最新主内存数据,保证线程可见性
|
|
|
+ for (ConcurrentHashMap.Node<K,V>[] tab = table;;) {
|
|
|
+ ConcurrentHashMap.Node<K,V> f; int n, i, fh;
|
|
|
+ if (tab == null || (n = tab.length) == 0)
|
|
|
+ // 初始化table
|
|
|
+ tab = initTable();
|
|
|
+ // 第二次循环,开始分治
|
|
|
+ // 当前链表是否为null,没有发生index冲突
|
|
|
+ else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
|
|
|
+ // 这里会使用cas锁
|
|
|
+ if (casTabAt(tab, i, null,
|
|
|
+ new ConcurrentHashMap.Node<K,V>(hash, key, value, null)))
|
|
|
+ break; // no lock when adding to empty bin
|
|
|
+ }
|
|
|
+ // 并发扩容会辅助扩容
|
|
|
+ else if ((fh = f.hash) == MOVED)
|
|
|
+ tab = helpTransfer(tab, f);
|
|
|
+ else {
|
|
|
+ V oldVal = null;
|
|
|
+ // 发生冲突时,会使用synchronized锁
|
|
|
+ synchronized (f) {
|
|
|
+ // 再次查询一次,如果该节点被删除就会导致不同步
|
|
|
+ if (tabAt(tab, i) == f) {
|
|
|
+ if (fh >= 0) {
|
|
|
+ binCount = 1;
|
|
|
+ for (ConcurrentHashMap.Node<K,V> e = f;; ++binCount) {
|
|
|
+ K ek;
|
|
|
+ // 如果key值相同,直接修改
|
|
|
+ if (e.hash == hash &&
|
|
|
+ ((ek = e.key) == key ||
|
|
|
+ (ek != null && key.equals(ek)))) {
|
|
|
+ oldVal = e.val;
|
|
|
+ if (!onlyIfAbsent)
|
|
|
+ e.val = value;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ConcurrentHashMap.Node<K,V> pred = e;
|
|
|
+ if ((e = e.next) == null) {
|
|
|
+ pred.next = new ConcurrentHashMap.Node<K,V>(hash, key,
|
|
|
+ value, null);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (f instanceof ConcurrentHashMap.TreeBin) {
|
|
|
+ ConcurrentHashMap.Node<K,V> p;
|
|
|
+ binCount = 2;
|
|
|
+ if ((p = ((ConcurrentHashMap.TreeBin<K,V>)f).putTreeVal(hash, key,
|
|
|
+ value)) != null) {
|
|
|
+ oldVal = p.val;
|
|
|
+ if (!onlyIfAbsent)
|
|
|
+ p.val = value;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (binCount != 0) {
|
|
|
+ if (binCount >= TREEIFY_THRESHOLD)
|
|
|
+ // 转换为红黑树
|
|
|
+ treeifyBin(tab, i);
|
|
|
+ if (oldVal != null)
|
|
|
+ return oldVal;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ addCount(1L, binCount);
|
|
|
+ return null;
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+cas使用时候:没有发生冲突的时候
|
|
|
+synchronized使用:index发生冲突的时候
|
|
|
+
|
|
|
+## 初始化table原理
|
|
|
+
|
|
|
+```
|
|
|
+ private final Node<K,V>[] initTable() {
|
|
|
+ Node<K,V>[] tab; int sc;
|
|
|
+ // 自旋
|
|
|
+ while ((tab = table) == null || tab.length == 0) {
|
|
|
+ // 如果发现其他线程正在扩容,当前线程释放CPU执行权
|
|
|
+ if ((sc = sizeCtl) < 0)
|
|
|
+ Thread.yield(); // lost initialization race; just spin
|
|
|
+ // cas操作,修改当前的sizeCtl为-1
|
|
|
+ else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
|
|
|
+ try {
|
|
|
+ if ((tab = table) == null || tab.length == 0) {
|
|
|
+ // 默认大小为16
|
|
|
+ int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
|
|
|
+ @SuppressWarnings("unchecked")
|
|
|
+ // 对table长度做默认初始化
|
|
|
+ Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
|
|
|
+ table = tab = nt;
|
|
|
+ // 16-4=12
|
|
|
+ sc = n - (n >>> 2);
|
|
|
+ }
|
|
|
+ } finally {
|
|
|
+ sizeCtl = sc;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return tab;
|
|
|
+ }
|
|
|
+```
|
|
|
+
|
|
|
+SIZECTL:默认值为0,用来控制table的初始化和扩容操作,具体应用在后续会体现出来
|
|
|
+-1:代表table正在初始化
|
|
|
+N:表示有N-1个线程正在进行扩容操作
|
|
|
+其余的情况:
|
|
|
+1. 如果table未初始化,表示table需要初始化的大小。0
|
|
|
+2. 如果table初始化完成。表示table的容量,默认是table大小的0.75倍
|
|
|
+
|
|
|
+## addCount分析
|
|
|
+
|
|
|
+```
|
|
|
+private final void addCount(long x, int check) {
|
|
|
+ CounterCell[] as; long b, s;
|
|
|
+ // basecount就是size的大小
|
|
|
+ if ((as = counterCells) != null ||
|
|
|
+ !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
|
|
|
+ CounterCell a; long v; int m;
|
|
|
+ boolean uncontended = true;
|
|
|
+ // 修改线程自己的value
|
|
|
+ // 线程的随机数&m
|
|
|
+ if (as == null || (m = as.length - 1) < 0 ||
|
|
|
+ (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
|
|
|
+ !(uncontended =
|
|
|
+ U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
|
|
|
+ fullAddCount(x, uncontended);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (check <= 1)
|
|
|
+ return;
|
|
|
+ s = sumCount();
|
|
|
+ }
|
|
|
+ // 这行支持并发扩容
|
|
|
+ if (check >= 0) {
|
|
|
+ Node<K,V>[] tab, nt; int n, sc;
|
|
|
+ while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
|
|
|
+ (n = tab.length) < MAXIMUM_CAPACITY) {
|
|
|
+ int rs = resizeStamp(n);
|
|
|
+ if (sc < 0) {
|
|
|
+ if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
|
|
|
+ sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
|
|
|
+ transferIndex <= 0)
|
|
|
+ break;
|
|
|
+ if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
|
|
|
+ transfer(tab, nt);
|
|
|
+ }
|
|
|
+ else if (U.compareAndSwapInt(this, SIZECTL, sc,
|
|
|
+ (rs << RESIZE_STAMP_SHIFT) + 2))
|
|
|
+ transfer(tab, null);
|
|
|
+ s = sumCount();
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+如果多个线程对size cas ++的情况下,会导致CPU飙升
|
|
|
+
|
|
|
+## ConcurrentHashMap为什么去除segment锁?
|
|
|
+
|
|
|
+因为占用太多内存,而且效率较低。
|
|
|
+ConcurrentHashMap1.7需要计算两次index,效率低
|
|
|
+
|
|
|
+## ConcurrentHashMap1.8为什么使用synchronized锁?
|
|
|
+
|
|
|
+synchronized在jdk1.6之后会有锁的升级,lock不自带自旋。
|
|
|
+不需要自己写!
|