kafka的存储方案是顺序追加写日志 + 稀疏哈希索引
kafka 中消息是以主题 Topic 为基本单位进行归类的,这里的 Topic 是逻辑上的概念,实际上在磁盘存储是根据分区 Partition 存储的, 即每个 Topic 被分成多个 Partition,分区 Partition 的数量可以在主题 Topic 创建的时候进行指定。
Partition 分区主要是为了解决 Kafka 存储的水平扩展问题而设计的, 如果一个 Topic 的所有消息都只存储到一个 Kafka Broker上的话, 对于 Kafka 每秒写入几百万消息的高并发系统来说,这个 Broker 肯定会出现瓶颈, 故障时候不好进行恢复,所以 Kafka 将 Topic 的消息划分成多个 Partition, 然后均衡的分布到整个 Kafka Broker 集群中。
Partition 分区内每条消息都会被分配一个唯一的消息 id,即我们通常所说的 偏移量 Offset, 因此 kafka 只能保证每个分区内部有序性,并不能保证全局有序性。
然后每个 Partition 分区又被划分成了多个 LogSegment,这是为了防止 Log 日志过大,Kafka 又引入了日志分段(LogSegment)的概念,将 Log 切分为多个 LogSegement,相当于一个巨型文件被平均分割为一些相对较小的文件,这样也便于消息的查找、维护和清理。这样在做历史数据清理的时候,直接删除旧的 LogSegement 文件就可以了。
Log 日志在物理上只是以文件夹的形式存储,而每个 LogSegement 对应磁盘上的一个日志文件和两个索引文件,以及可能的其他文件(比如以".snapshot"为后缀的快照索引文件等)
页缓存相对来说比较简单,页缓存在操作系统层面是保存数据的一个基本单位,Kafka 避免使用 JVM,直接使用操作系统的页缓存特性提高处理速度,进而避免了JVM GC 带来的性能损耗。
在 kafka 中页提高了大量批处理的 API ,可以对数据进行统一的压缩合并,通过更小的数据包在网络中进行数据发送,再进行后续处理,这在大量数据处理中,效率提高是非常明显的。