surveillance_radar_20250421115650.py 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. import numpy as np
  2. from scipy.signal import find_peaks
  3. # ==================== 侦查雷达类 ====================
  4. class SurveillanceRadar:
  5. #初始化函数,传入usrp,输入的通道,输出的通道
  6. def __init__(self, usrp, rx, tx):
  7. self.usrp = usrp
  8. self.rx = rx
  9. self.tx = tx
  10. # 封装一个发送信号的函数
  11. def send_signal(self, tx_signal, duration, center_freq, sample_rate, gain):
  12. # 发送信号
  13. self.usrp.send_waveform(tx_signal, duration, center_freq, sample_rate, self.tx, gain)
  14. print('侦查雷达已发送信号')
  15. # 封装一个接收信号的函数
  16. def recv_signal(self, num_samples, sample_rate, center_freq):
  17. rx_signal = self.usrp.recv_num_samps(num_samples, center_freq, sample_rate, self.rx)
  18. print('侦查雷达已接收信号')
  19. return rx_signal
  20. def execute_jamming(self, algorithm: callable, bandwidth: float, duration: float, sample_rate: float) -> np.ndarray:
  21. """
  22. 执行干扰信号生成
  23. :param algorithm: 算法函数
  24. :param bandwidth: 信号带宽 (Hz)
  25. :param duration: 信号持续时间 (秒)
  26. :param sample_rate: 采样率 (Hz)
  27. """
  28. num_samples = int(duration * sample_rate)
  29. jamming_signal = algorithm(
  30. bandwidth=bandwidth,
  31. duration=duration,
  32. sample_rate=sample_rate
  33. )
  34. return jamming_signal.astype(np.complex64)
  35. # 分析信号,获取目标距离
  36. def analyze_signal(self, rx_signal: np.ndarray, sample_rate: float,
  37. cfar_threshold: float = 20.0) -> list:
  38. """
  39. 分析接收信号并返回目标距离列表
  40. :param rx_signal: 接收信号(复数形式)
  41. :param sample_rate: 采样率(Hz)
  42. :param cfar_threshold: CFAR检测阈值(dB)
  43. :return: 目标距离列表(米)
  44. """
  45. # 1. 去斜处理(Dechirping)
  46. mixed = rx_signal * np.conj(self.tx_signal[:len(rx_signal)])
  47. # 2. 加窗处理(Hamming窗)
  48. window = np.hamming(len(mixed))
  49. windowed = mixed * window
  50. # 3. 距离FFT
  51. range_fft = np.fft.fft(windowed)
  52. spectrum_db = 20 * np.log10(np.abs(range_fft) + 1e-10) # 转换为dB
  53. # 4. 计算距离轴
  54. freq_bins = np.fft.fftfreq(len(spectrum_db), 1/sample_rate)
  55. ranges = (self.c * self.T * freq_bins) / (2 * self.B)
  56. # 5. CFAR目标检测(简化版)
  57. noise_floor = np.median(spectrum_db)
  58. peaks, _ = find_peaks(spectrum_db, height=noise_floor + cfar_threshold)
  59. # 6. 提取目标距离(取前向部分)
  60. valid_peaks = peaks[peaks <= len(ranges)//2]
  61. print(f"检测到目标距离:{[abs(ranges[p]) for p in valid_peaks]} 米")
  62. return [abs(ranges[p]) for p in valid_peaks]